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We describe the valence-band holes of quantum dot molecules formed by two vertically coupled disks, using
a four-band k · p Hamiltonian. It is shown that the strong spin-orbit coupling of the valence band introduces
characteristic features in the hole tunneling, which are not captured by the usual single-band heavy-hole
approximation. Therefore, a treatment of hole states as multiband Luttinger spinors is required. Within this
description the parity symmetry in the vertical direction is lost, and chirality symmetry must be used instead.
Effects of spin-orbit coupling on the hole and exciton states, as well as on the optical transitions are discussed.
We show that, with increasing interdot distance, the spin-orbit interaction leads to a bonding-antibonding
ground-state transition and to quenching of the excitonic emission. These results are relevant to recent
experiments.
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I. INTRODUCTION

There is current interest in engineering the electronic
properties of quantum systems by coupling semiconductor
quantum dots �QDs� and forming quantum molecules. In par-
ticular, molecules consisting of two vertically coupled quan-
tum dots �CQDs� are being fabricated and investigated by
several groups,1–10 often motivated by their possible applica-
tion in quantum information storing through optical control
of excitonic states.5,11–13 To date, the theoretical understand-
ing of the electronic states in these structures is mostly based
on single-band effective-mass approximations.1,3–11,14–19

While this model yields transparent results and is generally
valid for conduction-band electrons, its validity for valence-
band holes may be restricted. The reason for this is that the
valence band is built from atomic p-type orbitals, and thus it
is subject to a strong spin-orbit �SO� interaction, which leads
to a sizeable coupling of heavy-hole �HH� and light-hole
�LH� subbands.20 In QDs this coupling is weakened by quan-
tum confinement, which splits the HH and LH subbands.
Thus, the lowest hole states of single QDs are in many as-
pects well described as single-band HH states. Understand-
ing if this is also the case for CQDs is of interest, especially
in the view of recent works pointing out the important role of
hole tunneling in the formation of entangled exciton
states.5–7,17,21

In a symmetric double dot molecule, tunneling allows the
states, localized in the upper ��QD1�� and lower ��QD2��
dots, to hybridize, forming symmetric ��s�= �QD1�+ �QD2��
and antisymmetric ��as�= �QD1�− �QD2�� wave functions.
From a simple Hubbard-like picture, the energy of these
states is Es=E0− t and Eas=E0+ t, where E0 is the energy of
the localized states and t is the tunneling matrix element.3

For electrons, t is always positive so that the ground state is
symmetric and the first excited state is antisymmetric. This
picture is essentially the same as that found in homonuclear
diatomic molecules such as H2

+. By contrast, for holes recent
experiments have reported both positive and negative values
of t. The latter implies the formation of exotic molecular

ground states with strong antisymmetric character, which
have no analogue in natural molecules and therefore open up
perspectives of developing molecular systems with novel
properties.22

Negative values of t were predicted by a number of ato-
mistic calculations,23–26 and its origin was related to the
strong p-orbital component of the hole states. However,
deeper understanding was hindered by the numerical nature
of the studies. Moreover, these predictions referred to CQDs
with pronounced structural and strain field asymmetries,
which localize low-energy holes in one of the dots. In these
heteronuclear-molecule-like systems, the atomic localization
dominates over the molecular bond. Thus, the tunnel matrix
elements are small and sensitive to fine atomistic effects.
This is in contrast to the experimental system in Ref. 22,
where resonant electric fields were used to tune the hole
energy levels of the CQDs, forming strongly hybridized mo-
lecular states. These molecular states have a clear
homonuclear-molecule-like character so that they may dis-
play large and robust tunneling elements.5,6 In spite of this, it
was shown that with increasing interdot distance the value of
t switched from positive to negative. It was then suggested
that this behavior could be ascribed to the SO interaction of
holes, which modulates the tunneling as t= t0− tso, where t0 is
the heavy-hole tunneling element and tso the SO-induced cor-
rection.

In this paper, we use the k · p theory to provide detailed
theoretical understanding of this and other effects of SO in-
teraction on the hole states of CQDs. A four-band Luttinger-
Kohn Hamiltonian is employed, which provides the simplest
description while properly accounting for SO-induced sub-
band mixing.27 Within this framework, the hole states are
represented as Luttinger spinors, four-component objects
with two HH and two LH states. The symmetries of the
Luttinger spinors �and hence their derived physical proper-
ties� differ significantly from those of the single-band HH
states. SO interaction couples spin and orbital degrees of
freedom so the hole states cannot be classified by their spin
but rather by a total angular momentum. Likewise, SO inter-
action breaks the conservation of the parity �inversion sym-
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metry in the vertical direction� so that the spinors contain a
mixture of both symmetric and antisymmetric components
even when the CQDs are identical. As an alternative to par-
ity, we can classify the spinors by their chirality, which is
isomorphic to the electronic spin quantum number.28,29

We calculate the hole states as a function of the interdot
distance and show that SO interaction alone can explain the
negative hole tunneling elements t reported in Ref. 22. The
SO interaction competes with the tunneling matrix element
of the HH, leading to an effective tunneling element, which
may significantly differ from the single-band expectation.
The conditions favoring negative tunneling elements are then
elucidated. Some consequences of the resulting hole ground
states �with strong antisymmetric character� are discussed,
such as the formation of optically dark exciton ground states.

The paper is organized as follows: In Sec. II we give
details of the theoretical model. Hole states and their tunnel-
ing are described in Sec. III. Section III A is devoted to the
fundamental case of symmetric CQDs. Possible deviations
from the previous predictions in self-assembled CQDs, ow-
ing to strain fields or to structural asymmetry, are studied in
Sec. III B. In Sec. IV, we study the exciton states and their
optical response as a function of the interdot distance. Con-
clusions are presented in Sec. V.

II. THEORY

We investigate the double quantum dot structure illus-
trated in Fig. 1. The dots are assumed to have disk shape
with radius R, vertically separated by an interdot barrier of
thickness D. The upper and lower dots, hereafter referred to
as QD1 and QD2, have heights H1 and H2, respectively.
Since we are interested in the tunneling along the vertical

direction, we define the confining potential as V̂h�� ,z�
= V̂h���+ V̂h�z�, where V̂h��� is simply an infinite barrier in

the radial direction, whereas V̂h�z� is a square well potential,
as shown on the right side of Fig. 1, whose height is the
band-offset between the dot and barrier materials, Vc.

The valence band of semiconductors is built from p-type
atomic orbitals. Therefore, the microscopic �Bloch� orbital
angular momentum is l=1. Spin-orbit interaction couples l
with the spin quantum number s=1 /2 so that hole states
have a total Bloch angular momentum J= l+s, where J
=3 /2 for HH and LH subbands, and J=1 /2 for the split-off
band.20 At the center of the Brillouin zone, the split-off band

is energetically separated from the HH and LH subbands. As
a result, the four-band Luttinger-Kohn Hamiltonian provides
a good description of low-lying hole states by considering
the coupling between HH �J=3 /2,Jz= �3 /2� and LH �J
=3 /2,Jz= �1 /2� subbands while excluding the split-off
band. This validity of this approximation is endorsed by the
qualitative agreement between the four-band Luttinger spinor
results and atomistic tight-binding calculations including the
effect of remote bands.22,30 When spanned in the basis Jz
= +3 /2,−1 /2, +1 /2,−3 /2, the four-band Hamiltonian
reads27,29

ĤLK =�
P̂+ R̂ − Ŝ 0

R̂� P̂− 0 Ŝ

− Ŝ� 0 P̂− R̂

0 Ŝ� R̂� P̂+

� + V̂h��,z�I , �1�

where I is the identity matrix. The operators in the above
expression are given by

P̂+ =
�2

2
���1 + �2�p̂�

2 + ��1 − 2�2�p̂z
2� , �2a�

P̂− =
�2

2
���1 − �2�p̂�

2 + ��1 + 2�2�p̂z
2� , �2b�

R̂ =
�2

2
�− 	3��2p̂−

2 , �2c�

Ŝ =
�2

2
�2	3��3p̂−p̂z, �2d�

with the Luttinger parameters �1, �2, and �3, and the opera-
tors p̂z=−i�z, p̂�=−i��x� i�y�, and p̂�

2 = p̂x
2+ p̂y

2.
The resulting hole eigenstates, known as Luttinger

spinors, are four-component objects, each component associ-
ated to a different Bloch function �Jz�. Owing to the rota-
tional symmetry of the CQD system, the envelope part of
each component has a well-defined azimuthal quantum num-
ber mz. However, SO coupling mixes components with dif-
ferent mz, and only the total angular momentum Fz=mz+Jz is
a good quantum number for the entire spinor.29 The kth hole
state with a given Fz can then be written as

�Fz,k� = 

n,l �

A+3/2,n,l
Fz,k fFz−3/2,n��,���l�z��Jz = + 3

2�
A−1/2,n,l

Fz,k fFz+1/2,n��,���l�z��Jz = − 1
2�

A+1/2,n,l
Fz,k fFz−1/2,n��,���l�z��Jz = + 1

2�
A−3/2,n,l

Fz,k fFz+3/2,n��,���l�z��Jz = − 3
2�
� , �3�

where fmz,n
�� ,�� is the in-plane envelope part,

fmz,n
��,�� =

eimz�

	2�

	2

R

Jmz
�kn

mz��

�Jmz+1�kn
mzR��

. �4�

Jmz
�kn

mz�� is the Bessel function of order mz and radial
quantum number n. kn

mz represents the hole wave vector, de-

FIG. 1. �Color online� Schematic representation of the CQDs

under study and the vertical confinement potential V̂h�z�.
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fined in terms of the Bessel function roots ��n
mz� as kn

mz

=�n
mz /R.
The vertical components in Eq. �3� are trigonometric

functions, �l�z�=	 2
Wcos� l�z

W � for l odd and �l�z�=	 2
Wsin� l�z

W �
for l even, where W represents the size of the computational
box along z. A proper linear combination of these functions
may fit any double dot wave function in the vertical direc-
tion. In the particular case where the quantum molecule dis-
plays z-reflection symmetry �i.e., H1=H2�, the diagonal
terms of Hamiltonian �1� commute with the vertical inver-

sion symmetry operator îz. Therefore, the individual compo-
nents of the spinor have well-defined parity symmetry 	z,
either symmetric �	z=s� or antisymmetric �	z=as�. For sym-
metric components, only �l functions with l odd �i.e., co-
sines� have nonzero coefficients, while for antisymmetric
components, only �l with l even �i.e. sines� do so. However,
the off-diagonal SO terms of the Hamiltonian do not com-

mute with îz, as �îz , Ŝ�=2îzŜ. Thus, parity is not a good quan-
tum number for the entire Luttinger spinor.

As an alternative to parity, we define the chirality operator

̂ as28,29


̂ =�
îz 0 0 0

0 îz 0 0

0 0 − îz 0

0 0 0 − îz

� , �5�

which can be envisaged as an isospin quantum number.28

Luttinger spinors are eigenfunctions of this operator with
eigenvalue 	. It follows from Eq. �5� that the two first and
two last components of a Luttinger spinor with a defined
chirality have opposite parity. We label the spinors as chiral-
ity up �	=↑�, when the two first components are symmetric
�	z=s� and the two last are antisymmetric �	z=as�, and those
with reversed order of parities as chirality down �	=↓�.
Thus, for Fz=3 /2 the lowest 	=↑ state reads

�	 = ↑�h = �Fz = 3/2,	 = ↑,k = 1�

= 

n �


l=2p−1 A+3/2,n,l
3/2,↑,1 f0,n��,���l�z��Jz = + 3

2�

l=2p−1 A−1/2,n,l

3/2,↑,1 f2,n��,���l�z��Jz = − 1
2�


l=2p A+1/2,n,l
3/2,↑,1 f1,n��,���l�z��Jz = + 1

2�

l=2p A−3/2,n,l

3/2,↑,1 f3,n��,���l�z��Jz = − 3
2�
� ,

�6�

where p=1,2 ,3. . . is an integer. The corresponding �	=↓�h
state reads the same but the parity of each component is
reversed, so the order of the summations over l is inverted.

Even though our theory is not restricted to a single class
of material, for illustration purposes we will consider
InGaAs/GaAs CQDs. Disk-shaped vertically aligned coupled
quantum dots made of InGaAs with accurate control on the
interdot distance are now grown by means of the indium
flush technique.31 Moreover, there is evidence that the radius
of the coupled dots may be very similar.17 The Luttinger

parameters for InGaAs are �1=11.01, �2=4.18, and �3
=4.84, and the valence-band offset Vc=380 meV.32 The hole
states of the CQD are calculated by exact diagonalization of

ĤLK, on a basis with six radial states �n=0–5� and 46 har-
monics in the vertical direction �l=1–46�. The matrix ele-
ments of Hamiltonian �1� in the basis of Eq. �3� are given in
Appendix B.

III. HOLE STATES

In this section we study the hole states in CQDs as a
function of the structural parameters, focusing on the tunnel-
ing properties of the lowest-lying energy levels, i.e. the
ground and first excited states with Fz=3 /2.33 These two
states have the same radial part of the wave function but they
differ in the vertical direction.

A. Symmetric coupled quantum dots

Figure 2 represents the energy spectrum vs interdot dis-
tance for a double dot with R=10 nm and H1=H2=2 nm.
Panel �a� shows the energy levels calculated with a single-
band effective-mass Hamiltonian �i.e., setting the off-
diagonal terms of Hamiltonian �1� to zero�. This is the usual
approximation in most previous works.1,3–11,14–18 The ground
and excited states correspond to the symmetric and antisym-
metric HH states with mz=0, respectively, which is consis-
tent with a positive tunneling element t. As in the electron
case, the energy splitting between the two states �2t� de-
creases exponentially with increasing interdot distance.3,19,34

A strikingly different behavior is however observed when the
entire Hamiltonian is evaluated, as shown in panel �b�. The
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FIG. 2. �Color online� Energy levels of the two lowest hole
states as a function of the interdot distance calculated as �a� single-
band HH states and �b� Luttinger spinors. In �b�, Dc is the critical
distance at which the tunneling element t switches from positive to
negative.
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tunneling element t no longer exhibits a monotonic trend as a
function of D but a rather intricate behavior. At small inter-
dot distances, t is positive and then the ground and first ex-
cited states have 	=↑ and 	=↓ symmetry, respectively. Yet,
the tunneling element decreases quickly, and after a critical
distance Dc it becomes negative so that the ground state ac-
quires 	=↓ symmetry. The negative tunneling element may
be as large as a few millielectron volt, and only at larger
interdot distances it decreases gradually.

The behavior observed in Fig. 2�b� agrees qualitatively
with that inferred from the experiments and the theoretical
simulations of Ref. 22. This is in spite of the fact that here
we consider an ideal CQD system with no asymmetries in-
duced by realistic confinement details or strain fields. It then
follows that the reversal of the hole ground-state symmetry is
a consequence of their Luttinger spinor nature, which can be
understood without invoking atomistic effects or confine-
ment potential-induced broken parity. In particular, the dras-
tic change between Figs. 2�a� and 2�b� can be traced back to

the off-diagonal SO operator Ŝ of the Luttinger-Kohn Hamil-
tonian, which mixes HH and LH states with opposite parity.

In Fig. 3 we depict the wave-function profile along the
vertical direction for the four components of the Luttinger
spinors of Fig. 2�b� at D=4 nm. Dashed lines are used for
the 	=↓ ground state and solid lines for the 	=↑ excited
state. One can see that the Jz= +3 /2 and Jz=−1 /2 compo-
nents of the ground state are antisymmetric, while the Jz
= +1 /2 and Jz=−3 /2 are symmetric. The opposite set of
parities holds for the excited state, owing to the different
chirality. For both ground and excited states, the dominating
component is by far the Jz= +3 /2 HH �over ten times larger
than the other components�. This was expected because the
quantum confinement in QDs shifts the LH subband towards
high energies so that the low-energy levels are essentially
weakly coupled HH.20 It is then possible to define the 	=↓
spinor as “almost antisymmetric” and the 	=↑ one as “al-

most symmetric.”35 Still, the minor components of the spinor
cannot be neglected as they induce the important changes in
the tunneling behavior observed in Fig. 2�b�. It is worth not-
ing here that the largest minor component is the LH with
Jz= +1 /2 because its envelope angular momentum �m=1� is
smaller than that of the other minor components �see Eq.
�6��.

A more systematic view of the relative weight of the LH
components is given in Fig. 4, where we plot the ratio of LH
and HH weights in the Luttinger spinors of Fig. 2�b�. The
chirality up spinor �mostly a symmetric HH state� has a
small ��5%� contribution from the LHs, coming mainly
from the Jz= +1 /2 antisymmetric LH component. The
chirality down spinor �mostly an antisymmetric HH� has a
larger LH contribution. This is because the Jz= +1 /2 com-
ponent is now a symmetric LH and, for strong tunneling,
symmetric LH states are close in energy to the antisymmetric
HHs.36 However, at the point of the ground-state reversal
�vertical dashed line� both chirality up and down spinors
have a small ��5%� LH weight, which remains small for
longer distances. Thus, the chirality down ground state is not
a consequence of an increasing LH weight.

To obtain a clearer insight into the effect of the SO inter-
action, we next build a simple semianalytical model, which
allows us to disentangle the kinetic, potential, and SO inter-
action contributions to the hole energy. We redefine the po-
tential along z as two coupled parabolas centered in QD1 and
QD2;

V̂h�z� =
1

2
mHH

� 
HH
2 min��z − D1/2�2,�z + D1/2�2� , �7�

where mHH
� is the HH effective mass, mHH

� = 1
�1−2�2

, 
HH is the
confining frequency of the parabolas, and 2D1/2 is the dis-
tance between the minima of the parabolas. Note that both
HH and LH components feel the same confinement potential,
namely, Eq. �7�. When the dots are far enough to be effec-
tively isolated, the wave functions along z are the eigenfunc-
tions of the one-dimensional harmonic oscillator potentials,

� j
QD1�z� = �� j

�
�1/4

e−�j�z − D1/2�2/2, �8�

ψ
(z

)
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2
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FIG. 3. �Color online� Wave-function profile along z for the four
components, �Jz

h , of the hole ground �dashed line� and first excited
�solid line� states of Fig. 2�b� at D=4 nm. The ground-state chiral-
ity is 	=↓ and the excited state one is 	=↑. Note the opposite parity
of the Jz= +3 /2,−1 /2 components as compared to the Jz= +1 /2,
−3 /2 ones.
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FIG. 4. �Color online� Ratio of LH vs HH weight in the chirality
up and down spinors of Fig. 2�b�. The vertical dashed line indicates
the critical interdot distance at which the energy levels are reversed.
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� j
QD2�z� = �� j

�
�1/4

e−�j�z + D1/2�2/2, �9�

where � j =
mj

�
 j

� , with j=HH,LH. Here, mLH
� = 1

�1+2�2
and


LH=	mHH
�

mLH
� 
HH. Since LHs are lighter than HHs, they pen-

etrate more into the barrier ��LH��HH�.
When the dots are closer together, tunneling couples

� j
QD1�z� and � j

QD2�z�, forming symmetric and antisymmetric
combinations, � j

s�z�=Nj
s�� j

QD1+� j
QD2� and � j

as�z�=Nj
as�� j

QD1

−� j
QD2�. Here, Ns and Nas stand for the normalization con-

stants. An ansatz can then be postulated for the lowest 	=↑
�	=↓� wave function of the complete Luttinger-Kohn Hamil-
tonian, which preserves the chirality symmetry,


Fz =
3

2
,	 = ↑�↓�,k = 1�

parab

= 

n �

A+3/2,n
3/2,↑�↓�,1f0,n��,���HH

s �z���HH
as �z���Jz = + 3

2�
A−1/2,n

3/2,↑�↓�,1f2,n��,���LH
s �z���LH

as �z���Jz = − 1
2�

A+1/2,n
3/2,↑�↓�,1f1,n��,���LH

as �z���LH
s �z���Jz = + 1

2�
A−3/2,n

3/2,↑�↓�,1f3,n��,���HH
as �z���HH

s �z���Jz = − 3
2�
� ,

�10�

We calculate the expectation value of Hamiltonian �1�,
using Eq. �7� confinement potential, in the basis of Eq. �10�.
Since we are interested in understanding the tunneling be-
havior in the vertical direction, we only consider n=0, which
yields the simplest expressions in the radial direction. Fur-
thermore, we only consider the terms involving the dominant
hole component, Jz= +3 /2. Within this approximation, the
energy of the 	=↑ state is

E↑ = �A3/2,0
3/2,↑,1�2�0,0,s,HH�P̂+ + V̂h�0,0,s,HH�

+ 2A3/2,0
3/2,↑,1A−1/2,0

3/2,↑,1�0,0,s,HH�R̂�2,0,s,LH�

− 2A3/2,0
3/2,↑,1A1/2,0

3/2,↑,1�0,0,s,HH�Ŝ�1,0,as,LH� , �11�

and that of the 	=↓ state,

E↓ = �A3/2,0
3/2,↓,1�2�0,0,as,HH�P̂+ + V̂h�0,0,as,HH�

+ 2A3/2,0
3/2,↓,1A−1/2,0

3/2,↓,1�0,0,as,HH�R̂�2,0,as,LH�

− 2A3/2,0
3/2,↓,1A1/2,0

3
2

,↓,1�0,0,as,HH�Ŝ�1,0,s,LH� . �12�

In the above expressions, �m ,n ,	z , j�= fm,n�� ,��� j
	z�z�.

The coefficients AJz,0
are taken from exact numerical calcu-

lations and used as input for the analytical ansatz. The in-
plane part of the operator matrix elements is the same as in
the numerical model, and the vertical part is evaluated by

letting the operators V̂h�z�, p̂z
2, and p̂z act on �as�z� and �s�z�

�see Appendix B for further details�.
The energy levels resulting from Eqs. �11� and �12� for a

CQD with R=10 nm and H1=H2=5 nm, as a function of
the interdot distance, are shown in Fig. 5�a� using thin lines.
Thick lines depict the exact numerical solution for compari-
son. Clearly, the semianalytical model is an upper bound in
energy, but it suffices to reproduce the qualitative behavior of

the 	=↑ and 	=↓ states. Thus, we can use this model to
investigate the influence of SO coupling. First, we define the
diagonal tunneling element tdiag,

tdiag =
1

2
��A3/2,0

3/2,↓,1�2�0,0,as,HH�P̂+ + V̂h�0,0,as,HH�

− �A3/2,0
3/2,↑,1�2�0,0,s,HH�P̂+ + V̂h�0,0,s,HH�� , �13�

which corresponds to half of the energy splitting between the
	=↓ �excited� state and the 	=↑ �ground� state neglecting
SO terms. Actually, this is the tunneling element between
symmetric and antisymmetric HH states �as in Fig. 2�a��.
Next, we shall compare it with the effective tunneling ele-
ment, teff,

teff = tdiag − tso, �14�

which properly includes the relevant SO term coupling com-
ponents of the spinor with opposite parity, tso,

tso = A3/2,0
3/2,↓,1A1/2,0

3/2,↓,1�0,0,as,HH�Ŝ�1,0,s,LH�

− A3/2,0
3/2,↑,1A1/2,0

3/2,↑,1�0,0,s,HH�Ŝ�1,0,as,LH� . �15�

It is worth stressing that the SO term in Eq. �14� opposes the
diagonal tunneling element �see Appendix A�. Note also that
teff allows us to derive the energy levels of the double dot
system simply as E↑=E0− teff and E↓=E0+ teff, where E0 rep-
resents the energy of the hole localized in one dot.

efft
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FIG. 5. �Color online� �a� Energy levels of the two lowest hole
states as a function of the interdot distance calculated with the semi-
analytical �thin lines� and exact numerical �thick lines� model. �b�
Diagonal tunneling element �solid line� and spin-orbit correction
�dashed line�. �c� Effective tunneling element adding the diagonal
and spin-orbit tunneling terms. Panels �b� and �c� are derived from
the semianalytical model. Dotted lines in �b� and �c� highlight the
zero of energy.
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The diagonal tunneling element and the SO coupling term
are compared in Fig. 5�b�, using solid and dashed lines, re-
spectively. As can be seen, tdiag resembles the usual single-
band element for it is positive and decreases exponentially
until degeneracy is attained. On the other hand, tso is just a
correction for small interdot distances, when tdiag is large.
However, as the interdot distance increases it gains relative
weight and eventually it becomes the dominant term. When
this occurs, the effective tunneling element becomes negative
�Fig. 5�c�� and the ground-state symmetry is reversed. The
slower decay of tso is partly due to its LH origin as compared
to the HH origin of tdiag �see Eqs. �13� and �15�� and partly
due to the longer-range of the SO interaction as compared to
the mechanical tunnel-coupling.

We are now in a position to explain the ground-state re-
versal in simple terms. The SO interaction introduces minor
LH components to the otherwise pure HH states, forming
Luttinger spinors �Eq. �3��. Due to the chirality symmetry of
the spinors, the dominant HH and the largest LH components
have opposite parity �Eq. �6��. Thus, the symmetric HH state
is mixed with an antisymmetric LH state and the antisym-
metric HH with a symmetric LH. Although the weight of
these LH components remains small for most interdot dis-
tances �Fig. 4�, their influence scales up as the two dots are
separated because the tunneling of LHs decays much slower
than that of HHs �Fig. 5�b��. Thus, the symmetric HH is
increasingly unstabilized by the antisymmetric LH, while the
antisymmetric HH is increasingly stabilized by the symmet-
ric LH. At some point this leads to a reversal of the almost
symmetric and almost antisymmetric states. A simple phe-
nomenological model summarizing this is presented in Ap-
pendix A.

We next investigate the conditions favoring negative ef-
fective hole tunneling elements in CQDs, i.e., the conditions

enhancing the relative weight of the SO terms, �Ŝ�. To elu-
cidate the dependence on structural parameters of the disks,
which constitute the CQD, in Fig. 6 we plot the critical in-
terdot distance at which 	=↑ and 	=↓ levels cross �Dc� as a
function of the disks radius and height calculated with the
numerical model. From the figure, it is apparent that the level
reversal takes place at smaller interdot distances if the disks
have small radius or large height. The radial dependence can
be understood from the matrix element �B3� shown in the

Appendix B, where one can see that Ŝ matrix elements are
inversely proportional to R. As for the height dependence, it

should be noted that with increasing disk height, the wave-
function penetration into the barrier diminishes and so does
the tunneling energy. In addition, the diagonal kinetic energy
proportional to p̂z

2 decreases faster than the off-diagonal spin-
orbit term proportional to p̂z. As a result, the relative contri-

bution from the Ŝ operator increases. A straightforward ma-
terial dependence can be also inferred from Eq. �2d�.
Negative teff will be generally favored in systems with large
spin-orbit interaction ��3�. This is confirmed in Fig. 6�c�,
where the critical distance is compared for different materi-
als: InGaAs, InAs, GaAs, GaN �zinc blende�, and SiGe. The
Luttinger parameters are taken from Refs. 29 and 32; the
disks have R=10 nm and H=3 nm and a band-offset of 200
meV. While the level reversal is a rather general phenom-
enon, not restricted to the InGaAs system studied so far, the
critical distance varies significantly depending on the mate-
rial. Thus, almost antisymmetric ground states are found at
short distances for InAs ��3=9.2� and at longer distances as
the Ga content increases; first InGaAs ��3=4.84� and then
GaAs ��=2.93�. Indeed, we have checked that the level
reversal is hardly observable in etched GaAs CQDs10 due to
the large radius of the dots and the weak spin-orbit inter-
action.

B. Strain and asymmetry in self-assembled
coupled quantum dots

From the above discussion, it is clear that usual In�Ga�As/
GaAs CQDs are liable to display the characteristic multiband
hole tunneling behavior, for spin-orbit mixing is strong in
InAs systems and the dots have small radii. Here we evaluate
two additional effects which are often present in self-
assembled structures and were neglected in the previous dis-
cussion, namely, strain and broken symmetry of the CQD, to
analyze possible departures from the ideal system.

Strain fields are fundamental in self-assembled dots
grown by the Stranski-Krastanow method,20 and they play an
essential role for the nucleation of dots on top of each other
in order to form vertically coupled structures.37 Negative
hole tunneling elements have been predicted for strained
CQDs using atomistic models.22,24–26 Therefore, rather than
carrying out a thorough analysis of the strain influence, we
shall focus on its most relevant effects; the splitting between
HH and LH subbands and the shallow confinement of LHs in
the interdot barrier material.38

In InGaAs/GaAs QDs, biaxial strain may split HH and
LH subbands by as much as 200 meV.34 Obviously, this
weakens the SO coupling between HH and LH subbands, up
to the point where the ground state has almost exclusively
HH character. This argument has been used by many authors
to justify single-band HH approximations for self-assembled
CQD structures.3–9,11,14–19 However, according to our previ-
ous results, it appears that even a small SO mixing suffices to
induce drastic changes in the hole tunneling behavior. To test
the validity of the single-band approximation in strained
CQDs, in panels �a� and �b� of Fig. 7 we compare the energy
of the lowest 	=↑ and 	=↓ states in a CQD with R
=15 nm and H1=H2=2 nm. Panel �a� shows the simulation
for an unstrained system, calculated with the multiband
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FIG. 6. �Color online� Interdot distance at which chirality 	=↑
and 	=↓ states cross as a function of the �a� disks radius, �b� height,
and �c� material composition. In �a�, the disks height is set to
H1=H2=2 nm. In �b�, the radius is set to R=15 nm. In �c�,
R=10 nm and H1=H2=3 nm.
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Luttinger-Kohn Hamiltonian as in the previous sections.
Panel �b� shows the simulation for the same CQD but adding

a strain-induced energy offset Vs to the P̂− operators of ĤLK,
which splits the LH components. Clearly, the qualitative be-
havior is not affected by the splitting since for realistic val-
ues of the strain �Vs=200 meV� only a moderate quenching
of the SO signature is observed �the maximum splitting be-
tween 	=↓ and 	=↑ levels decreases from �4 meV for Vs
=0 to �2 meV for Vs=200 meV�. This is in spite of the fact
that the ground state has about 97% HH component.

In InAs/GaAs CQDs, the strain fields also lead to shallow
interdot potential barriers for LHs.34,39 In the strong strain
limit, the LH confinement in the vertical direction may re-
semble a wide single quantum well instead of a double
well.24 To ascertain the influence of this effect on the hole
tunneling, in Fig. 7�c� we plot the energy levels of a CQD
with Vs=200 meV and a single-well confinement potential
for LH components �i.e., neglecting the interdot barrier of
Fig. 1 potential�. By comparison with panel �b�, where the
LH had double well confinement, it is apparent that lowering
the interdot barrier enhances the influence of SO coupling,
and hence the negative effective tunneling elements. This is
because the energy of the LH components is reduced, which
increases their relative weight in the spinor. Moreover, the
energy spacing between antisymmetric and symmetric LH
components is reduced so that the Jz= +1 /2 �antisymmetric�
component of 	=↑ states becomes much larger than in un-

strained states. As a result, the magnitude of Ŝ terms in-
creases.

From the above discussions, we conclude that a correct
description of hole tunneling in strained CQDs requires tak-
ing into account the strong modulation of the tunneling ele-
ment induced by SO interaction.

So far we have considered symmetric CQDs. However, in
most cases, vertically coupled self-assembled dots are asym-
metric in size and composition, the asymmetry being an ac-
cidental consequence of the Stranski-Krastanow growth or

introduced intentionally.6 Different effects of the broken
symmetry on the properties of CQDs have been studied us-
ing single-band17 and atomistic25 models. To study its influ-
ence on hole tunneling, in Fig. 8 we depict the ground and
first excited states of a CQD where the coupled disks have
slightly different heights, H1=4.1 nm and H2=4.0 nm, and
radius R=20 nm. In this case the chirality symmetry is bro-
ken, the spinor components having mixed symmetric and
antisymmetric character. As a result, instead of a crossing
between the two lowest states an anticrossing is observed.
This is confirmed by the insets representing the ground-state
dominant component �Jz= +3 /2� before and after the anti-
crossing. One can see that the ground state still changes from
mostly bonding to mostly antibonding as D increases.40

Therefore, hole tunneling in asymmetric CQDs also displays
the characteristic behavior arising from SO coupling.

It is now possible to apply external electric fields upon
asymmetric CQDs in order to form coherent molecular
states.4–9,22 These states are achieved by bringing the levels
of either electrons or holes in the upper and lower dots into
resonance so that the resonant particle becomes delocalized
over the entire structure. When resonant hole states are pro-
duced, multiband k · p and atomistic theories predict the same
tunneling behavior as described here for symmetric CQDs
�Fig. 5�c��, with the tunnel matrix element collapsing at a
critical interdot distance Dc.

22 This is surprising because the
chirality symmetry is broken and one would expect the two
lowest levels to anticross as in Fig. 8. However, the resonant
electric field lifts the mixing between symmetric and anti-
symmetric character in the spinor components, thus restoring
an effective chirality for the Luttinger spinors of the resonant
hole levels.

An expected experimental manifestation of this chiral-like
response is that the anticrossing gap between resonant bond-
ing and antibonding hole states, �h=2�t�, should first de-
crease with the interdot distance, then collapse at Dc, next
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FIG. 7. �Color online� Energy levels of the two lowest hole
states as a function of the interdot distance for different values of
the HH-LH energy splitting due to biaxial strain, Vs. In panel �c�,
the interdot barrier height for LH components has been lowered to
Vc=0, as expected for strained CQDs. Solid and dashed lines rep-
resent 	=↑ and 	=↓ states, respectively.

40

42

44

46

E
(m

eV
)

−4 0 4 8
z (nm)

−8 −4 0 4 8
z (nm)−8

D (nm)

0.5 1.0 1.5 2.0 2.5 3.0

FIG. 8. Energy levels of the two lowest hole states as a function
of the interdot distance in an asymmetric CQD. Dotted lines are a
guide to the eye showing the expected level evolution without the
anticrossing. The insets depict the wave function along z for the
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recover, and finally vanish asymptotically. Although conclu-
sive proof of this behavior has not been found yet, recent
data suggest a deviation from the monotonic exponential de-
cay of �h predicted by single-band theory.6,41

IV. EXCITON STATES AND OPTICAL TRANSITIONS

Most theoretical simulations to date have modeled exci-
tons in CQDs as HH excitons.1,3–6,8,9,11,14–19 In this section,
we show features arising from the SO-induced subband mix-
ing of valence holes. We consider the case of symmetric
InGaAs CQDs where both electron and hole states form co-
herent delocalized states. We calculate the exciton energy
levels and their emission spectrum. The exciton Hamiltonian
is given by

Ĥexc = Ĥe + ĤLK −
e2

���re − rh�
. �16�

In the above expression, Ĥe is the electron Hamiltonian,

ĤLK is the Luttinger-Kohn Hamiltonian for the hole, Eq. �1�,
and the third term is the Coulomb attraction with e standing
for the electron charge and ��=12.9 for the effective dielec-
tric constant. The electron Hamiltonian in the effective-mass
approximation is

Ĥe = −
�2

2m�
�p̂�

2 + p̂z
2� + V̂e��,z� , �17�

where m�=0.05m0 is the electron effective mass �m0 is the

free-electron mass� and V̂e�� ,z� is the electron confinement

potential, which we define as V̂h�� ,z�, but using the
conduction-band offset �we take Vc=530 meV within the
usual range of strained InGaAs/GaAs heterostructures.32� In
symmetric CQDs, the electron states have a well-defined par-
ity along the z direction, either symmetric �	z=s� or antisym-
metric �	z=as�. Hamiltonian �17� is solved by exact diago-
nalization, yielding eigenfunctions of the form

�n,mz,	z��sz� = 

l

Al
n,mz,	zfmz,n

��,���l�z��sz� , �18�

with sz standing for the spin z projection. Here the summa-
tion runs over odd �even� values of l for 	z=s �	z=as� states.
The two lowest electron states are the first symmetric and
antisymmetric ones, �+ �e= �n=0,mz=0,	z=s� and �−�e= �n
=0,mz=0,	z=as�, respectively.

Electron and hole states are computed on a basis with up
to six radial nodes �n=0–5� and 30 harmonics in the vertical
direction �l=1–30�. The exciton Hamiltonian is diagonalized
on a basis composed by the Hartree products of the two
lowest electron states �symmetric and antisymmetric� with
sz=1 /2 and the two lowest hole states �chirality up and
down� with Fz=3 /2: �+ �e�↑ �h, �+ �e�↓ �h, �−�e�↑ �h, and
�−�e�↓ �h.

It can be shown that, as in the single-band
approximation,3,14 �+ �e�↑ �h and �−�e�↓ �h are optically active
�bright� states, while �+ �e�↓ �h and �−�e�↑ �h are optically in-
active �dark�. Let us examine a pair of instances. Since pho-
tons carry one quantum of angular momentum, in principle

the electron �sz= +1 /2� states �total angular momentum Jz
= +1 /2� may recombine with holes through the Jz= +3 /2
and Jz=−1 /2 components. Additionally, one has to consider
the orbital selection rules, given by the overlap between the
envelope part of the electron and hole wave functions,
�ne ,mz

e ,	z
e �nh ,mz

h ,	z
h�=�nenh�mz

emz
h�	z

e,	z
h. For the �+ �e�↑ �h case,

where mz
e=0 and 	z

e=s, the Jz=−1 /2 component of the hole
state does not fulfill the orbital selection rules, as it has mz

h

=2 �recall Eq. �6��. However, the Jz= +3 /2 component ful-
fills the rules �mz

h=0 and 	z
h=s�, and therefore the dipole

transition is possible �i.e., �+ �e�↑ �h is a bright state�. On the
contrary, for �+ �e�↓ �h, neither the Jz= +3 /2 nor the Jz
=−1 /2 components �both with 	z

h=as� fulfill the orbital se-
lection rules, and the state is dark. The optically bright and
dark states subspaces defined above are not mixed by Cou-
lomb interaction.

Figure 9�a� shows the exciton energy levels as a function
of the interdot distance for a CQD with R=10 nm and H1
=H2=2 nm. The states are labeled by the dominant compo-
nent of the exciton wave function. The behavior roughly re-
sembles that estimated with single-band approximations �cf.,
dashed lines of Fig. 3�a� in Ref. 17�: the electron tunneling
elements are much larger than the hole ones, so the pair of
levels associated with �+ �e are lower in energy than those
associated with �−�e. With increasing interdot distance, the
tunneling elements become smaller and the two pairs of lev-
els approach each other until they reach a constant energy
splitting given by the Coulomb interaction.3,14 Nonetheless, a
qualitative difference with respect to single-band results can
be found within each pair of levels. Namely, the states with
�	=↑� and �	=↓� hole component cross at a distance Dc �dot-
ted line in the figure�. This is due to the negative hole tun-
neling elements described in the previous section, which al-
ters the energy structure of excitons as well. As a matter of
fact, it introduces a symmetry change in the exciton ground
state from �+ �e�↑ �h to �+ �e�↓ �h, which cannot be predicted
without considering the hole SO coupling.

Figure 9�b� shows the emission spectrum arising from the
exciton levels of panel �a�. The emission intensity coming
from an exciton state with energy E is calculated from Fer-
mi’s golden rule as20
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FIG. 9. �Color online� �a� Energy levels of the four lowest ex-
citon states and �b� their corresponding optical resonances as a
function of the interdot distance. Eg stands for the gap energy. In
�a�, the states are labeled by their dominant single-particle compo-
nent and a dot line is used to indicate the distance at which the
ground-state symmetry changes.
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I�E� � 

i

� dr�i

exc�r,r�
2

S�E − Ei� , �19�

where �i
exc�re ,rh� represents the i exciton state wave func-

tion with energy Ei, and S�E−Ei� is a Lorentzian curve with
band width �=1 meV. As expected, only two resonances are
observed in the spectrum, corresponding to the optically ac-
tive states. Dark states remain dark in spite of the subband
mixing.

In Fig. 9�b�, the emission due to electron-hole recombina-
tion from both bonding and antibonding electron levels is
considered. While this may be the case in CQDs subject to
phonon bottleneck,42 under certain experimental conditions,
nonradiative relaxation between exciton levels of the CQD
may be faster than electron-hole recombination. In the latter
case, low-power photoluminescence emission arises from re-
combination between the thermally accessible states only
�mainly the exciton ground state�.42,43 Therefore, the forma-
tion of a dark exciton ground state, reported in Fig. 9�a�,
should quench the emission intensity dramatically. To illus-
trate this point, we calculate the integrated emission intensity
vs interdot distance assuming thermal equilibrium,

I�T� �



i

� dr�i

exc�r,r�
2

e−�Ei−Egs�/kBT



i

e−�Ei−Egs�/kBT
. �20�

Here T is the temperature, Egs is the exciton ground-state
energy, and kB is the Boltzmann constant. The resulting
emission intensity vs interdot distance is depicted in Fig. 10
at different temperatures. As can be seen, the intensity expe-
riences a strong suppression as D exceeds the critical dis-
tance Dc=1.4 nm where the exciton ground state becomes
dark due to the negative hole tunneling elements. For larger
interdot distance, the intensity is partially recovered because
the bright and dark exciton states associated with �+ �e be-
come quasidegenerate �see Fig. 9�a�� so that the thermal oc-

cupation of the optically active state increases. From this
behavior, it follows that the luminescence of CQD devices is
optimized for interdot distances D�Dc. It is also worth not-
ing the opposite temperature dependence of the emission in-
tensity before and after the change in ground-state symme-
try: when D�Dc, the first excited state is dark, so increasing
the temperature reduces the overall emission; conversely,
when D�Dc, the first excited state is bright, and increasing
the temperature enhances the emission. This could serve as
an experimental signature of the exciton energy structure in
CQDs.

The suppression of the emission intensity reported in this
section should be expected for symmetric CQDs, where both
electrons and holes are delocalized over the entire structure.
With increasing structural asymmetry, the particles tend to
localize in a single dot and the emission suppression be-
comes weaker. This will also be the case in asymmetric
CQDs subject to resonant electric fields where only one of
the particles is significantly delocalized.

V. CONCLUSIONS

We have shown that the inclusion of SO coupling and
HH-LH mixing leads to effects in the tunneling of holes in
CQDs. The simplest correct description of hole states is
given by Luttinger spinors, obtained from a four-band k · p
Hamiltonian. Within this model, parity symmetry in the ver-
tical direction is no longer a good quantum number, as Lut-
tinger spinors are composed by a mixture of components
with different parities. Alternatively, we have proposed
chirality as a good quantum number.

The spinors in CQDs have a strongly dominant HH com-
ponent, which determines the tunneling matrix element for
small interdot distances. However, the minor components of
the spinor introduce a correction to the tunneling element,
which becomes important as the interdot distance increases.
This is due to the fact that in Luttinger spinors with a given
chirality the parity of the most important LH component is
opposite to that of the dominant HH component. For large
interdot barriers, tunneling of LHs is stronger than that of
HHs, and therefore the effect of the LH component is greatly
enhanced. As a consequence, an effective tunneling element
is obtained, which may be strongly reduced as compared to
the simple HH expectation. For large interdot distance, the
effective tunneling element becomes negative and the hole
ground state changes chirality symmetry �from almost sym-
metric to almost antisymmetric�. This finding shows that the
bonding to antibonding hole ground-state reversal observed
in recent experiments with asymmetric CQDs under resonant
electric fields22 can be explained from the Luttinger spinor
nature of valence holes without the need of invoking struc-
tural asymmetries or atomistic effects.

SO effects on the exciton energy structure and optical
transitions of CQDs have been also analyzed. It has been
shown that they lead to dark exciton ground states, which
may be reflected as a strong suppression of the CQD emis-
sion intensity at certain interdot distances.
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FIG. 10. �Color online� Emission intensity at thermal equilib-
rium as a function of the interdot distance. The CQD is the same as
in Fig. 9. A strong suppression of the intensity takes place as the
exciton ground state becomes dark at D=Dc=1.4 nm.
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APPENDIX A: SIMPLE MODEL OF THE SO CORRECTION
TO THE TUNNELING ELEMENT

In this appendix we develop a simplified model that pro-
vides a basic insight into the effect of the SO interaction on
the tunneling matrix elements of CQDs. To this end, we ap-
proximate the Luttinger-Kohn Hamiltonian for a CQD mol-
ecule as

Ĥ = ĤQD1 + ĤQD2 + Ĥt + Ĥso, �A1�

where ĤQD1 and ĤQD2 are single-band Hamiltonians of the

bottom and top QDs. Ĥt adds the tunnel-coupling term and

Ĥso is the relevant SO interaction term mixing HH and LH
levels. We solve the above Hamiltonian step by step. First,

we solve ĤQD1 and ĤQD2 in the basis of the HH and LH
levels. The atomic �localized� hole states are obtained;

ĤQD1 + ĤQD2 =�
E1

HH 0 0 0

0 E2
HH 0 0

0 0 E1
LH 0

0 0 0 E2
LH
� . �A2�

Here E1
HH and E2

HH �E1
LH and E2

LH� are the energies of the
lowest HH �LH� in QD1 and QD2 respectively. Assuming
that the dots are identical �E1=E2� and adding the tunnel-
coupling term, we obtain:

ĤQD1 + ĤQD2 + Ĥt =�
E1

HH − tHH 0 0

− tHH E1
HH 0 0

0 0 E1
LH − tLH

0 0 − tLH E1
LH
� =�

E1
HH − tHH 0 0 0

0 E1
HH + tHH 0 0

0 0 E1
LH − tLH 0

0 0 0 E1
LH + tLH.

� , �A3�

where tHH and tLH stand for the HH and LH tunneling matrix
elements, respectively. The above levels correspond to the
HH and LH bonding and antibonding states,

Eb
HH = E1

HH − tHH, Ea
HH = E1

HH + tHH,

Eb
LH = E1

LH − tLH, Ea
LH = E1

LH + tLH.

Next we include the SO interaction. We know from Sec.

III A that the relevant SO term, Ŝ, mixes HH and LH states
with opposite parity to form spinors with a given chirality.

Thus, we define the SO coupling terms S↑= �b ,HH�Ŝ�a ,LH�
and S↓= �a ,HH�Ŝ�b ,LH�. The complete Hamiltonian reads
now as

Ĥ =�
Eb

HH 0 0 S↑

0 Ea
HH S↓ 0

0 S↓ Eb
LH 0

S↑ 0 0 Ea
LH.
� . �A4�

We then obtain two states mixed by S↑ �chirality 	=↑
spinors� and two mixed by S↓ �chirality 	=↓ spinors�,

E	=↑
+ =

Eb
HH + Ea

LH

2
+	S↑

2 + �1

2
�Eb

HH − Ea
LH��2

,

E	=↓
+ =

Ea
HH + Eb

LH

2
+	S↓

2 + �1

2
�Ea

HH − Eb
LH��2

,

E	=↓
− =

Ea
HH + Eb

LH

2
−	S↓

2 + �1

2
�Ea

HH − Eb
LH��2

,

E	=↑
− =

Eb
HH + Ea

LH

2
−	S↑

2 + �1

2
�Eb

HH − Ea
LH��2

.

Since the SO term is usually a perturbation as compared to
the energy splitting between HH and LH states, the square
root in the previous expressions can be Taylor-expanded to
the first order. This yields

E	=↑
+ = Eb

HH +
S↑

2

Eb
HH − Ea

LH = E1
HH − tHH − tso

↑ , �A5�

E	=↓
+ = Ea

HH +
S↓

2

Ea
HH − Eb

LH = E1
HH + tHH − tso

↓ , �A6�

E	=↓
− = Eb

LH −
S↓

2

Ea
HH − Eb

LH = E1
LH − tLH + tso

↓ , �A7�
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E	=↑
− = Ea

LH −
S↑

2

Eb
HH − Ea

LH = E1
LH + tLH + tso

↑ , �A8�

where we have defined the SO-induced tunneling elements

tso
↑ =

S↑
2

Ea
LH−Eb

HH and tso
↓ =

S↓
2

Eb
LH−Ea

HH. Equations �A5�–�A8� clearly re-
late the chiral spinors to molecular HH and LH states per-
turbed by the SO interaction. The energy splitting between
the two first �mostly HH� and two last �mostly LH� states is

E	=↓
+ − E	=↑

+ = 2�tHH − tso� , �A9�

E	=↑
− − E	=↓

− = 2�tLH − tso� , �A10�

with tso= �tso
↓ − tso

↑ � /2. This shows that the SO perturbation
acts as a correction to the HH tunneling element. Since tso

↓

� tso
↑ �because the mixed HH and LH levels are closer in

energy for 	=↓�, the correction tends to reduce the energy
splitting. Eventually, when tso exceeds tHH, the ground state
switches from E	=↑

+ �mostly a bonding HH state� to E	=↓
+

�mostly an antibonding HH state�.
The results of this section are summarized diagrammati-

cally in Fig. 11.

APPENDIX B: MATRIX ELEMENTS

The matrix elements of the operators involved in ĤLK,
Eqs. �2a�–�2d�, can be easily obtained from the matrix ele-
ments of their momentum operators projected on the basis

states �n ,mz , l�= fmz,n
�� ,���l�z�. For P̂+ and P̂−, the constitu-

ent elements are

�l1m1n1�p̂z
2�n2m2l2� =

�2l2

W2 �n1,n2
�m1,m2

�l1,l2
, �B1�

and

�l1m1n1�p̂�
2 �n2m2l2� = ��n

m

R
�2

�n1,n2
�m1,m2

�l1,l2
, �B2�

where R is the radius of the disks and W is the size of the

computational box along z. For Ŝ, the relevant element is

�l1m1n1�p̂−p̂z�n2m2l2� =
2�m1,m2−1

R�Jm1+1��n1

m1�Jm2+1��n2

m2��

��− 2m2�
0

1

Jm1
��n1

m1s�Jm2
��n2

m2s�ds

+ �n2

m2�
0

1

sJm1
��n1

m1s�Jm2+1��n2

m2s�ds�
� �l1��z�l2� . �B3�

In the above expression, �l1��z�l2�=0 if both l1 and l2 are
even or odd due to the odd symmetry of the integrand. Oth-
erwise,

�l1��z�l2� =
2l2

W
� � �− 1�l2

l1 + l2
sin� �l1 + l2��

2
�

+
1

l1 − l2
sin� �l1 − l2��

2
�� . �B4�

Finally, for R̂, the required element is

�l1m1n1�p̂−
2�n2m2l2�

=
2�l1,l2

�m1,m2−2

R2�Jm1+1��n1

m1�Jm2+1��n2

m2��

� ���n2

m2�2�
0

1

sJm1
��n1

m1s�Jm2
��n2

m2s�ds

− 4m2�m2 − 1��
0

1 1

s
Jm1

��n1

m1s�Jm2
��n2

m2s�ds

+ 2�n2

m2�m2 − 1��
0

1

Jm1
��n1

m1s�Jm2+1��n2

m2s�ds� .

�B5�

For the analytical model developed in Sec. III A, the ver-
tical parts of the matrix elements are given by

��HH
s�as��V̂h��HH

s�as�� = 2�Ns�as��2���HH
QD1�V̂h��HH

QD1� � ��HH
QD1�V̂h��HH

QD2�� ,

�B6�

��HH
s�as��p̂z

2��HH
s�as�� = �Ns�as��2�HH

��1 � ��HH
QD1��HH

QD2��2 − �1 + 2�HHD1/2
2 ��� ,

�B7�

��HH
s�as���z��LH

as�s�� = − 2NsNas�LH

����HH
QD1�z��LH

QD1� + D1/2��HH
QD1��LH

QD1�

� ���HH
QD2�z��LH

QD1� + D1/2��HH
QD2��LH

QD1��� ,

�B8�

E1

LH

Ea

LH

Eb

LH

E1

HH
Ea

HH

Eb

HH

2t
LH

2t
HH

E
−

ν=

E
−

ν=

E
+

ν=

LH SO
2 (t − t )

E
+

ν=

HH SO
2 (t − t )

+ H
so

+ H
tQD

H

S S

FIG. 11. �Color online� Schematic diagram of the influence ex-
erted by each term of Hamiltonian �A1� on the energy levels of a
CQD. The HH and LH levels of the QDs �left� hybridize into mo-
lecular states split by tHH and tLH �midleft�. Spin-orbit interaction
couples states with the same chirality �midright� further modifying
the energy splittings �right�. It is assumed that E1

LH�E1
HH and tLH

� tso� tHH.
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where the upper and lower sign in � corresponds to the 	=↑ and 	=↓ state, respectively. These expressions show that states

with different chirality will have different matrix elements not only for the diagonal operators of the Hamiltonian �V̂h�z� and
p̂z

2� but also for the off-diagonal spin-orbit ones �p̂z�.
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